The Joy of Learning Engineering and Education Quality

"We are here to learn, to make a difference and to have fun" - W. Edwards Deming  

In my ASQ Education Brief article, “STEM Demands Innovation” published in February in celebration of Engineers’ Week, I wrote of some of the latest innovative thinking for both exciting students about STEM careers and improving engineering education.  This blog continues that discussion, addressing the joy of learning.   Two very relevant and recently published books provide insight to the Joy of learning and will be highlighted in the discussions in this blog.  I recommend reading both books. They are: 

A Whole New Engineer: The Coming Revolution in Engineering Education by David E. Goldberg and Mark Somerville

 Joy Inc : How We Built a Workplace People Love by Richard Sheridan


K-12 STEM Outreach: Starting the Journey to Student Joy in Learning 

In “STEM Demands Innovation”, I wrote of STEM(science-technology-engineering-math) outreach efforts such as the FIRST Robotics competition that has made such a huge difference in inspiring high school students about engineering and STEM, and bringing them the joy of learning.  It cannot be overstated how much fun students have at these competitions!  Key to FIRST are corporate partnerships within a community; employees volunteer their expertise to FIRST teams and provide technical know-how and mentoring on engineering and teamwork.  

There are a number of significant and well-established outreach programs;  I have listed my favorite ones in my K-12 links.   Many companies have supported STEM outreach;  I hope more companies will join the call for participation. Often employees find joy and fun in volunteering.  With the current expected shortage of U.S. STEM professionals, it is imperative that STEM outreach programs are supported.     

The Importance of Joy of Learning in Developing the "Whole New Engineer"

Engineering education research has been a driving force in guiding engineering colleges in transformative initiatives to improve both instruction and pedagogy for effective, experiential learning.  But often, it is not enough. Professors assume that the students are already motivated in an engineering career, when students have their own doubts, especially when the courses get tough and they cannot see their future in engineering in 4-6 years. Professors and their assistants may not be engaging enough and connect with campus issues that students are experiencing.   In addition, a student may feel he/she does not fit in and drop-out.  Students experiencing the joy of learning and colleges/faculty celebrating with students on their successes or achieving milestones such as completion of a course project, gaining secondary admission or completion of an internship will go a long way in engaging students and achieving a higher student retention rate.   

As I discussed in my article, A Whole New Engineer: The Coming Revolution in Engineering Education (ThreeJoy Associates, 2014) is a new book that recommends a significant cultural transformation for engineering education.  The authors, David E. Goldberg and Mark Somerville, propose an increased focus on a real student-centered culture.  Their five-pillar educational transformational model of values  joy, trust, courage, connection and openness rings true for student success and is consistent with a student-centered, quality-oriented educational culture.  It encourages students' deep-learning, creative thinking and the students' confident view of becoming engineers.   Less focus on a “weeding-out”culture, and more on coaching and mentoring for student success and an enjoyable learning experiences. As a result, students feel they are empowered and inspired in their academic/career paths as future engineers.   Some engineering colleges already have or are making the transformation to  a student-focused learning  culture. This book provides a model and recommendations for a more complete transformation. 

Joy of Learning at Engineering Colleges and in the Workplace : A Quality Experience

In A Whole New Engineer, the authors propose that the " joy pillar" for a successful engineering education program includes three kinds of joy:

  •          “the joy of engineering in designing and making”
  •          “ the joy of close relationships”
  •          “the joy in growth and development”.

Together, they define an integrated view of joy of learning.  

When I read A Whole New Engineer, I was reminded of the research and work of quality management expert Myron Tribus on joy of learning and quality in education. Tribus was one of the early leaders (starting in the 1970s) on defining successful quality in education systems,  empowering students in their learning, including in engineering colleges.  Since then, these ideas on Quality in Education have been expanded upon by Franklin Schargel, David Langford, Lee Jenkins and others, and successfully applied in schools.  

In his article,  “Total Quality in Schools of Business and Engineering”,  Tribus wrote ,

” QUALITY in education is what makes learning a pleasure and a joy…  It takes a quality experience to create an independent learner…Teachers must be ever alert to engage the students in a discussion of what constitutes a quality experience.”  

 Tribus’ joy of learning provided me the insight that we may connect the ideas in A Whole New Engineer, ideas that are very engineering education-centric , with the ideas from the field of Quality in Education.   A strong connection exists between a quality management system (and culture) for engineering education and  the  joy of learning engineering.  As I see it, if we do not start with joy and celebration of learning in the freshman year and finish with joy of learning from experiences in the senior year, somehow the engineering college has not accomplished its vision for its graduates. (Of course, the practices that lead to joy of learning must be integrated with the academic and teaching/learning processes that provide the rigor for an engineering education.)   Furthermore, without students having the joy of learning as seniors, we risk a lower retention of graduates as engaged practicing engineers.  Mentoring students throughout their college years  and helping them feel joy and celebrate their learning experiences matters for their future career.

The Culture of Joy in the Workplace

In support of these ideas, consider the discussion of a culture of joy from the workplace  perspective:  Richard Sheridan, author of Joy Inc : How We Built a Workplace People Love (Portfolio, 2013, 2015)  and CEO of  Menlo Innovations (Ann Arbor) writes in Joy Inc. of creating a culture of joy at Menlo Innovations.  He describe joy in the workplace as

" Joy is designing and building something that actually sees the light of day and is enjoyably used and widely adopted by the people for whom it was intended."

 In building this culture, he has adopted many ideas from lean methodology and quality management.  In connecting quality thinking with the "joy" workplace culture, Sheridan writes:

"Alongside all the practices that contribute to quality at Menlo is the upward spiral of morale that comes from knowing you are operating within an environment where it is safe and respected to do good work.  Rigor and discipline are hard, and it's always easy to say, "Tomorrow I will do better." Tomorrow never comes- it is the actions we take today that make all the difference.  If you can get your entire team into a disciplined routine of applying a rigorous approach you all believe in, and the effects become noticeable, morale soars even if the rigor is difficult.  It is in these moments of rigor that the seeds of joy are planted.  When your team enjoys the fruits of their labor, there will be an undeniable satisfaction that boosts morale and gets everyone ready to do it all again." 

These thoughts transition well to engineering education. In any engineering education program, academic rigor and well-defined quality processes are needed to ensure a quality education, and with a culture that celebrates joy of learning, there is a sense of accomplishment, leading to joy.   

Corporate-Sponsored Internships Add to the Joy of Learning Engineering

In today’s engineering education programs, it is expected that students have had internships or co-ops with industry by the time they graduate.  A recent Gallup poll indicates that having an internship is one of the six college experiences linked to life-preparedness.  A well-planned internship/co-op program can also bring “joy of learning” to students.  Companies who sponsor internships or capstones can show students the possibilities of their career paths and the exciting challenges of engineering new products.

Summary: A Call for Joy of Learning 

In summary, a "Joy" culture belongs in engineering colleges as well as the STEM workplace.  We need more engineers, we need to replace “weeding out” students in the freshman and sophomore years, with supportive, inclusive and innovative curricula that excite students and bring them joy of learning,  such as experiencing hands-on “real-world” projects.   Engineering education leaders have the vision of students enjoying their college years, graduating and becoming successful engineers in their communities.  More can be done in our engineering colleges in creating a more student-centered "joy of learning" culture, leading to a quality education and the graduation of 21st century engineers serving their communities and enjoying their careers as engineers.  

Cindy Veenstra, PhD, Veenstra and Associates

Start with STEM Initiative

Last week, Change the Equation announced a new initiative called Start with STEM.  According to their press release, in the next year, Change the Equation wants to encourage 1.5 million more K-12 students to become involved with K-12 STEM outreach activities.    They plan to encourage corporations to support the Start with STEM initiative.  Based on the Change the Equation tweets and news, companies are signing up.  This is great news. 

The link to the Start with STEM program is at

Congratulations to Change the Equation for this innovative effort!

Cindy Veenstra, Ph.D., ASQ Fellow



Improving Diversity in the STEM Workplace

Corporations have been asking universities for more diversity in graduates in engineering and other STEM fields.   Now in an announcement by Intel, Intel has established a $300 million fund “to be used in the next three years to improve the diversity of the company’s work force, attract more women and minorities to the technology filed and make industry more hospitable to them once they get there.”  (The New York Times, Jan. 6, 2015, “Intel Allocates $300 Million for Workplace Diversity” by Nick Wingfield)

This is significant and welcome news.  For a long time, women and minorities have been underrepresented in the engineering and technology fields.  Overall, the percent of women graduates in computer science is about 13% and in computer engineering about 10%, with 19% of engineering bachelor degrees earned by women graduates. (ASEE Profiles of Engineering & Engineering Technology Colleges, 2013 Edition, p. 12)  According to The New York Times article, without increased participation by women in engineering programs, it is “especially difficult to improve diversity at Intel.”   In 2013, only 4.3% of engineering graduates were African-American and 9.3% were Hispanic. (ASEE Profiles of Engineering &Engineering Technology Colleges, 2013 Edition)  

It will be interesting to follow Intel’s success in increasing workplace diversity and especially, the strategies it uses. 

Cindy Veenstra 

Happy Holidays

As we come to the end of the year and approach the holiday season, I wish you and yours a Happy Holiday!

From the past week, I would like to share some welcome news on improving access and graduation for college students.

The non-profit Indianapolis group, Complete College America, released a report “Four-Year Myth”, discussing the low 4-year college graduation rates. Their premise is that most students should graduate on-time in 4 years.  For years, the focus has been on a 6-year graduation rate when families usually plan for financing four years of college.  Especially in the STEM fields, many students have found it difficult to graduate in four years, unless they took a large number of AP courses in high school.  For years, the 4-year graduation rate has been low; it is not a recent occurrence.  In their research, Complete College America found that “Nationwide, only 50 of more than 580 public four-year institutions graduate a majority of their full-time students on time.”  The Department of Education reports that the 4-year graduation rate for 4-year public institutions is 33% (based on the 2006 freshman class).   A much higher percent graduate within 6 years, but with the cost of tuition the extra years can be very expensive to the student and his/her family.  The report suggests strategies that provide “leaner” processes for enrolling in courses and graduating.   Sometimes, the issue is as simple as the student cannot enroll in required courses, thus delaying degree completion. Included in the report is significant thought on establishing math course pathways for students who need to take remedial math. 

Significantly, last week, the White House held a College Opportunity Day of Action Summit with many college leaders attending.    This summit focused on systems thinking, designing a student-focused culture, and innovation/sharing of ideas. In addressing improved access and graduation, the following topics were discussed: improved pathways from high school to college, improved high school college counseling, mentoring students once in college, technology innovation supporting students, improving STEM degree completion, more collaboration between high schools and universities, and reducing students’ cost of college.  Panel discussions focused on innovation and collaboration in education, and changing the institutional culture to a student focused culture supporting learning and graduation.  There was a call for universities to get more involved with the common core and not to consider it as only a K-12 concern (which I agree with).

Over 600 commitments were made for improving access and degree completion by universities and organizations, including 100 commitments on STEM education. See this link for a summary of the STEM degree commitments by colleges. This US News article summarizes the summit.  

My hope is that we continue to see this level of collaboration and systems thinking among universities.  As Quality guru, Joseph Juran, often said, we implement quality improvement one project at a time. Each university must implement a “student success” culture.  Those universities that continue embracing a “weed-out” culture will find that they are less competitive.  Implementation of the ideas expressed both in the Complete College America report and at the White House Summit will lead to better access and higher degree completion rates! It is exciting to see this progress!

Cindy Veenstra

Supporting STEM Education through Industry's Internships

Too often STEM students enter their freshman year of college and find a disconnect between what they learned in high school and what is expected by college professors in preparation for the freshman courses in calculus, science and English composition. As a result, some students struggle academically.  In addition, the perception exists (and in many cases it is reality) that the STEM courses are more time-consuming than for non-STEM majors, leaving less time for extracurricular activities and part-time jobs than their friends have.  Often students enter college, not really knowing what a career as an engineer is about. For these and other reasons, students opt out of engineering or physics, when they could have been an excellent physicist or engineer, supporting industry’s and their community’s need for more technical talent and skills.  

In today’s work environment, industry wants graduates to be “work-ready”, already familiar with the work culture.  So we have two significant problems:  a lower retention rate than desired and higher expectations by industry than can be achieved within most STEM programs.  And we continually hear that there are many technical jobs that employers are having a difficult time filling.

I would like to propose that one approach is more collaboration between universities and industry. We can both provide industry with more graduates who are “work-ready,” and improve student retention (i.e. more graduates) through a shared vision and appropriate actions to provide internships.  If most students could land an internship in the summer before their junior and senior years, the experience would convince many of them to stay with a STEM major (because they like the experience!) with students more motivated to continue in their major  (despite the difficulty of the STEM courses) and they would also gain work experience, ready to lead a project in their field upon graduation. Often mentoring and experiences during the internship also help a student decide on a career pathway.

Successful internships require a great deal of collaboration with both the university and the employer mentoring the student in his/her internship.   Quality improvement thinking such as Lean Six Sigma can be useful in mentoring of interns.

In my article “The Collaborative Role of Industry in Supporting STEM Education” published in the Journal for Quality and Participation (October 2014), I discuss how transitioning from academic studies to the workplace is a mentoring process and make recommendations for supporting STEM students in their career planning and internships. These include:

  •   View internships as a mentoring process by both the university and employer

  •    Improve university career planning programs so that they support students in    developing networking skills

  •     Industry scale up on available internships

  •     Provide more internships locally

  •     Show interns the “big picture” of the company, encouraging them to consider    the company    for future employment.

  •    Engage interns in discussions and team meetings, as a learning experience.  


Importance of Federal Work-Study Programs

Today, the Chronicle of Higher Education reports on a set of recommendations to improve the Federal Work-Study Program, in its article " Low-Income Students Often Miss Out on Federal Work-Study Funds".

The report recommends that the work-study funds are more readily available to low-income students and that there are more work-study jobs that are relevant to the students' majors.  The idea of supporting internships is also discussed. 


The Importance of Mentoring and Internships

Thomas Friedman"s New York Times' article "It Takes a Mentor" published September 9th,  discusses a Gallup poll that found that "engaged" employees in the workplace often had a mentor in college who took an interest in them,  and an internship before completing their degree.

As Friedman points out, often employers want college graduates ready to work in industry. There are discussions currently ongoing for more government-employer-education partnerships.  

I have written an article that will be published in the October issue of the Journal for Quality and Participation that discusses the importance of internships and co-ops in preparing students to be "work-ready" .  Be sure to watch for it. 

Cindy Veenstra 



A Good Sign: University Presidents Addressing the Need for Higher Graduation Rates

It is a good sign to read and hear that university presidents are discussing the need for higher graduation rates, and with more emphasis.  The message is coming through clearly that it is no longer appropriate to say to a freshman class, look to your right and look to your left and one of you will not graduate.  Instead of a weed-out culture, universities are voicing a student-focused and engaged supportive culture that helps students graduate.  This is all very positive for the future of STEM education where student support is needed, both through engaged teaching and support outside the classroom.  

Two examples:

The Chronicle of Higher Education recently published an interview with President Freeman A. Hrabowski III, University of Maryland-Baltimore County.   President Hrabowski explained that all students need support in college. The UMBC learning communities are very important in providing this support.  His message is that high graduation rates are important and can be achieved, with the presence of learning support processes.

At the 2014 annual American Society for Engineering Education (ASEE) Conference held this past June, keynote speaker President Mitch Daniels, Purdue University, spoke of the importance of “getting the yield of this process up”, referring to much higher rates of degree completions.  In particular, he said that a weed-out mentality “has got to go” and it is important to “improve the success rate of teaching”.


As an aside,  ASEE’s Prism’s recently referred to President Daniels as “STEM’s Unlikely Patron Saint”

 Related to improving graduation rates, here is one of my articles posted on the leadership page that discusses an approach to supporting students in their first year of college.

“A Strategy for Improving Freshman College Retention” published in the Journal for Quality and Participation.


Cindy Veenstra, Ph.D. 

Community Involvement in STEM Learning

The ASQ Journal for Quality and Participation, April 2014 issue is focused on "Building Excellence through Social Responsibility".  In the article " Community Involvement in STEM Learning", David Davis and I discuss the importance of the involvement of corporations, organizations and educational institutions in the community in supporting informal STEM learning. In particular, we highlight citizen science projects, such as testing water quality to inspire K12 students about learning science.  These projects also have the potential of reaching out to economically disadvantaged students since the cost of the projects is often very low.  At the same time, entire families or neighborhoods can get involved in a fun activity that supports/encourages STEM learning and research.  

Most corporations recognize the importance of improving STEM learning and our K-12  education systems.  They recognize that there is a shortage of engineers, technicians and scientists.  Support of science citizen projects is often inexpensive and yet can be a community-wide effort.   In collaborating on citizen science projects, corporations are recognized as socially responsible members of the community  supporting K-12 STEM learning and future student pathways to careers in science and engineering.  

The entire issue  is at

Cindy Veenstra, PhD 

Freshman Interest in Engineering Increases 57%

An article in this morning's Inside Higher Education reports that using the UCLA/HERI CIRP survey given to freshmen, researchers have found that interest in engineering as a major has increased 57% in recent years. Other STEM fields have also increased. See this link for the article

This is great news!    The next question is: how can engineering colleges address student success and retention issues so that a higher rate of students are retained in engineering and enter the workforce as engineers?  

Often student success processes can be easily improved.  This includes processes for student support during the freshman year, continuing good advising support throughout the college years, collaborating with industry on internship and co-op opportunities so that students get some hands-on experience before they graduate and helping students navigate the university processes to meet their financial needs. 

Looking for ideas for improving engineering student retention at your engineering college?    Email me at


Cindy Veenstra, PhD